
U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C-11 API PROGRAMMER’S GUIDE. .. 1
U2C-11 board initialization routines.. 1
I2C high level and configuration routines .. 4
I2C low level routines ... 8
I2C wire level routines.. 13
GPIO routines... 15
SPI configuration routines .. 20
SPI data transfer routines ... 24

U2C-11 API Programmer’s Guide.

U2C-11 board initialization routines

BYTE U2C_GetDeviceCount();

The U2C_GetDeviceCount function checks how many I2CBridge devices are currently
attached.

Parameters:
 None.
Return value:

The function returns the number of the I2CBridge devices detected on current
computer.

U2C_RESULT U2C_GetSerialNum(

HANDLE hDevice,
long* pSerialNum

);

The U2C_GetSerialNum function retrieves the Serial Number of the current device. This
ID is unique for current I2CBridge device and can help to identify it when using a
number of devices simultaneously.

Parameters:

hDevice

 1

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Handle to the I2CBridge device to retrieve the Serial Number from. The
device has to be opened first, using U2C_OpenDevice or
U2C_OpenDeviceBySerialNum function.

pSerialNum
Pointer to a long integer variable to be filled with the device Serial
Number.

Return value:
U2C_SUCCESS
 Serial Number was successfully obtained.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_IsHandleValid (

HANDLE hDevice
);

The U2C_IsHandleValid function checks whether the device referenced by hDevice
handle is currently present

Parameters:

hDevice
Handle to the I2CBridge device that will be checked.

Return value:
U2C_SUCCESS
 The device referenced by hDevice handle is present.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

HANDLE U2C_OpenDevice(

BYTE nDevice
);

The U2C_OpenDevice function opens the I2CBridge device.

Parameters:

nDevice
The device number to open.

Return value:
If the function succeeds, the return value is a valid handle to the specified device.
If the function fails, the return value is INVALID_HANDLE_VALUE. This can
happen if the specified device is not present.

 2

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

HANDLE U2C_OpenDeviceBySerialNum(

long nSerialNum
);

The U2C_OpenDeviceBySerialNum function opens the I2CBridge device with specified
Serial Number.

Parameters:

nSerialNum
The Serial Number of the device to open.

Return value:
If the function succeeds, the return value is a valid handle to the specified device.
If the function fails, the return value is INVALID_HANDLE_VALUE. This can
happen if the specified device is not present.

U2C_RESULT U2C_CloseDevice(
HANDLE hDevice

);

The U2C_CloseDevice function closes the open device handle.

Parameters:

hDevice
Handle to the I2CBridge device to close.

Return value:
U2C_SUCCESS
 The device referenced by hDevice handle was successfully closed.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_GetFirmwareVersion(
HANDLE hDevice,
PU2C_VESION_INFO pVersion

);

The U2C_GetFirmwareVersion function retrieves the version of the firmware currently
loaded into the I2CBridge device referenced by hDevice handle.

Parameters:

hDevice
Handle to the I2CBridge device to obtain firmware version from.

 pVersion
Pointer to a U2C_VERSION_INFO structure to be filled with the
firmware version number.

.
Return value:

 3

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_SUCCESS
 The firmware version was successfully retrieved.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_GetDriverVersion(
HANDLE hDevice,
PU2C_VERSION_INFO pVersion

);

The U2C_GetDriverVersion function retrieves the version of the driver used to
communicate with I2CBridge device.

Parameters:

hDevice
Handle to the I2CBridge device to obtain the version of the driver used to
communicate with.

 pVersion
Pointer to a U2C_VERSION_INFO structure to be filled with the driver
version number.

Return value:

U2C_SUCCESS
 The driver version was successfully retrieved.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_VERSION_INFO U2C_GetDllVersion();

The U2C_GetDllVersion function retrieves the version of the “I2CBrdg.dll” dynamic link
library.

Parameters:
 None.

Return value:

U2C_VERSION_INFO structure containing “I2CBrdg.dll” dynamic link library
version number.

I2C high level and configuration routines

 4

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_RESULT U2C_SetI2cFreq(

HANDLE hDevice,
BYTE Frequency

);

The U2C_SetI2cFreq function configures I2C bus speed.

Parameters:

hDevice
Handle to the I2CBridge device.

Frequency
The frequency of I2C bus, where:
0 corresponds to I2C bus fast mode.
1 corresponds to I2C bus standard mode.
1+n corresponds to clock period of I2C bus equal to 10+2*n µS.

For convenience following constants were introduced:

constant frequency
U2C_I2C_FREQ_FAST I2C bus fast mode
U2C_I2C_FREQ_STD I2C bus standard mode
U2C_I2C_FREQ_83KHZ 83 kHz
U2C_I2C_FREQ_71KHZ 71 kHz
U2C_I2C_FREQ_62KHZ 62 kHz
U2C_I2C_FREQ_50KHZ 50 kHz
U2C_I2C_FREQ_25KHZ 25 kHz
U2C_I2C_FREQ_10KHZ 10 kHz
U2C_I2C_FREQ_5KHZ 5 kHz
U2C_I2C_FREQ_2KHZ 2 kHz

Return value:
U2C_SUCCESS
 The frequency value was successfully set.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_GetI2cFreq(

HANDLE hDevice,
BYTE *pFrequency

);

The U2C_GetI2cFreq function obtains I2C bus speed.

Parameters:

hDevice

 5

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Handle to the I2CBridge device.
pFrequency

A pointer to byte to be filled with current I2C bus frequency, where:
0 corresponds to I2C bus fast mode.
1 corresponds to I2C bus standard mode.
1+n corresponds to clock period of I2C bus equal to 10+2*n µS.

For convenience following constants were introduced:

constant frequency
U2C_I2C_FREQ_FAST I2C bus fast mode
U2C_I2C_FREQ_STD I2C bus standard mode
U2C_I2C_FREQ_83KHZ 83 kHz
U2C_I2C_FREQ_71KHZ 71 kHz
U2C_I2C_FREQ_62KHZ 62 kHz
U2C_I2C_FREQ_50KHZ 50 kHz
U2C_I2C_FREQ_25KHZ 25 kHz
U2C_I2C_FREQ_10KHZ 10 kHz
U2C_I2C_FREQ_5KHZ 5 kHz
U2C_I2C_FREQ_2KHZ 2 kHz

Return value:
U2C_SUCCESS
 The frequency value was successfully retrieved.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_Read(

HANDLE hDevice,
PU2C_TRANSACTION pTransaction

);

The U2C_Read function reads up to 256 bytes from the I2C slave device.

Parameters:

hDevice
Handle to the I2CBridge device.

pTransaction
Pointer to the U2C_TRANSACTION structure to be used during the read
transaction.
Before calling the function this structure have to be partially filled:

• nSlaveDeviceAddress – must contain the slave I2C device address;

 6

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

• nMemoryAddressLength – must contain the internal address length
(in bytes from 0 up to 4). If nMemoryAddressLength is equal to 0,
no address will be sent to device and repeated I2C start condition
won’t be generated.

• MemoryAddress – must contain the internal I2C slave device
address.

• nBufferLength – must contain the number of bytes to be read from
the I2C slave device.

After successful completion of the read operation Buffer member of the
structure will be filled with data read from slave I2C device.

Return value:
U2C_SUCCESS
 The data was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_SLAVE_OPENNING_FOR_WRITE_FAILED
U2C_SLAVE_OPENNING_FOR_READ_FAILED
U2C_SENDING_MEMORY_ADDRESS_FAILED

U2C_RESULT U2C_Write(

HANDLE hDevice,
PU2C_TRANSACTION pTransaction

);

The U2C_Write function writes up to 256 bytes into the I2C slave device.

Parameters:

hDevice
Handle to the I2CBridge device.

pTransaction
Pointer to the U2C_TRANSACTION structure to be used during the write
transaction.
Before calling the function this structure have to be filled:

• nSlaveDeviceAddress – must contain the slave I2C device address;
• nMemoryAddressLength – must contain the internal address length

(in bytes from 0 up to 4). If nMemoryAddressLength is equal to 0,
no address will be sent to device.

• MemoryAddress – must contain the internal I2C slave device
address.

• nBufferLength – must contain the number of bytes to be written
into the I2C slave device.

• nBuffer – must contain the data to be written.
Return value:

U2C_SUCCESS

 7

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

 The data was successfully written.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_SLAVE_OPENNING_FOR_WRITE_FAILED
U2C_SENDING_MEMORY_ADDRESS_FAILED
U2C_SENDING_DATA_FAILED

U2C_RESULT U2C_ScanDevices(

HANDLE hDevice,
PU2C_SLAVE_ADDR_LIST pList

);

The U2C_ScanDevices function scans slave device addresses currently occupied by I2C
slave devices connected to the I2C bus.

Parameters:

hDevice
Handle to the I2CBridge device.

pTransaction
Pointer to the U2C_SLAVE_ADDR_LIST structure to be filled with slave
device addresses. nDeviceNumber member will contain the number of the
valid addresses in List array.

Return value:
U2C_SUCCESS

Operation was successfully completed and pList is filled with valid data.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

I2C low level routines

U2C_RESULT U2C_Start(

HANDLE hDevice
);

The U2C_Start function generates the start condition on the I2C bus.

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS
 Start condition was successfully generated.

 8

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_RepeatedStart(

HANDLE hDevice
);

The U2C_RepeatedStart function generates the repeated start condition on the I2C bus.

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS
 Repeated start condition was successfully generated.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_Stop(

HANDLE hDevice
);

The U2C_Stop function generates the stop condition on the I2C bus. It can be also used
for the generation of the repeated stop condition.

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS
 Stop condition was successfully generated.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_PutByte(

HANDLE hDevice,
BYTE Data

);

The U2C_PutByte function transmits a single byte to the I2C bus. It assumes that the bus
is available and the Start Condition has been generated first. This function doesn’t check
acknowledge from the I2C slave device, so you must call U2C_GetAck to check
acknowledge or to use U2C_PutByteWithAck instead of U2C_PutByte function. This

 9

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

function can be called several times to implement custom I2C like protocol. The function
does not finish the I2C bus transaction after transmission, so at the end of I2C transaction
U2C_Stop function has to be called.

Parameters:

hDevice
Handle to the I2CBridge device.

Data
Byte to be transmitted to the I2C bus.

Return value:
U2C_SUCCESS
 Byte was successfully transmitted to the I2C bus.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_GetByte(

HANDLE hDevice,
BYTE* pData

);

The U2C_GetByte function reads a single byte from the I2C bus. It assumes that the bus
is available, the Start Condition has been previously generated and the slave device has
been properly addressed. This function doesn’t generate acknowledge, so you must call
the U2C_PutAck function or use U2C_GetByteWithAck instead of U2C_GetByte
function. This function can be called several times to implement custom I2C like
protocol. The function does not finish the I2C bus transaction after transmission, so at the
end of I2C transaction U2C_Stop function has to be called.

Parameters:

hDevice
Handle to the I2CBridge device.

pData
A pointer to byte to be filled with data read from the I2C bus.

Return value:
U2C_SUCCESS
 Byte was successfully read from the I2C bus.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

 10

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_RESULT U2C_PutByteWithAck(

HANDLE hDevice,
BYTE Data

);

The U2C_PutByteWithAck function transmits a single byte to the I2C bus and checks for
acknowledge from I2C slave device. It assumes that the bus is available and the Start
Condition has been generated first. This function can be called several times to
implement custom I2C like protocol. The function does not finish the I2C bus transaction
after transmission, so at the end of I2C transaction U2C_Stop function has to be called.

Parameters:

hDevice
Handle to the I2CBridge device.

Data
Byte to be transmitted to the I2C bus.

Return value:
U2C_SUCCESS

Byte was successfully transmitted to the I2C bus and I2C slave device
provided acknowledge.

U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_NO_ACK

I2C slave device did not acknowledge the transmitted byte.

U2C_RESULT U2C_GetByteWithAck(

HANDLE hDevice,
BYTE* pData,
BOOL bAck

);

The U2C_GetByteWithAck function reads a single byte from the I2C bus and then
generates acknowledge or not-acknowledge condition according to the value passed in
bAck parameter. It assumes that the bus is available, the Start Condition has been
previously generated and the slave device has been properly addressed. This function can
be called several times to implement custom I2C like protocol. The function does not
finish the I2C bus transaction after transmission, so at the end of I2C transaction
U2C_Stop function has to be called.

Parameters:

hDevice
Handle to the I2CBridge device.

pData
A pointer to byte to be filled with data read from the I2C bus.

bAck

 11

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

This parameter determines if acknowledge should be generated after the
byte is transmitted. If bAck is TRUE – acknowledge will be generated, if
bAck is FALSE – non-acknowledge will be generated.

Return value:
U2C_SUCCESS
 Byte was successfully read from I2C bus.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_PutAck(

HANDLE hDevice,
BOOL bAck

);

The U2C_PutAck function generates acknowledge or not-acknowledge condition
according to the value passed in bAck parameter. This function does not finish the I2C
bus transaction after transmission, so at the end of I2C transaction U2C_Stop function has
to be called.

Parameters:

hDevice
Handle to the I2CBridge device.

bAck
This parameter determines whether acknowledge or non-acknowledge
should be generated. If bAck is TRUE – acknowledge will be generated, if
bAck is FALSE – non-acknowledge will be generated.

Return value:
U2C_SUCCESS

Acknowledge / non-acknowledge condition was successfully generated.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_GetAck(

HANDLE hDevice
);

The U2C_GetAck function checks for acknowledge from I2C slave device. This function
does not finish the I2C bus transaction after transmission, so at the end of I2C transaction
U2C_Stop function has to be called.

Parameters:

hDevice
Handle to the I2CBridge device.

 12

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Return value:

U2C_SUCCESS
I2C slave device provided acknowledge.

U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_NO_ACK

I2C slave device did not provide acknowledge.

I2C wire level routines
U2C_RESULT U2C_ReadScl(

HANDLE hDevice,
U2C_LINE_STATE* pState

);

The U2C_ReadScl function checks the current state of the SCL line of the I2C bus.

Parameters:

hDevice
Handle to the I2CBridge device.

pState
Pointer to the location to be filled with the SCL line state:
LS_RELEASED – if line is released (high)
LS_DROPPED_BY_I2C_BRIDGE – if I2CBridge device has pulled
down the line.
LS_DROPPED_BY_SLAVE – if I2C slave device has pulled down the
line.

Return value:
U2C_SUCCESS

The line state was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_ReadSda(
HANDLE hDevice,
U2C_LINE_STATE* pState

);

The U2C_ReadSda function checks the current state of the SDA line of the I2C bus.

Parameters:

hDevice
Handle to the I2CBridge device.

pState
Pointer to the location to be filled with the SDA line state:
LS_RELEASED – if line is released (high)

 13

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

LS_DROPPED_BY_I2C_BRIDGE – if I2CBridge device has pulled
down the line.
LS_DROPPED_BY_SLAVE – if I2C slave device has pulled down the
line.

Return value:
U2C_SUCCESS

The line state was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_ReleaseScl(
HANDLE hDevice,

);

The U2C_ReleaseScl function releases the SCL line of the I2C bus. If the line is not
pulled down by I2C slave device, it will get high.

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS

The line was successfully released.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_ReleaseSda(

HANDLE hDevice,
);

The U2C_ReleaseSda function releases the SDA line of the I2C bus. If the line is not
pulled down by I2C slave device, it will get high.

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS

The line was successfully released.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_DropScl(

HANDLE hDevice,
);

The U2C_DropScl function pulls down the SCL line of the I2C bus.

 14

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS

The line was successfully dropped.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_DropSda(

HANDLE hDevice,
);

The U2C_DropSda function pulls down the SCL line of the I2C bus.

Parameters:

hDevice
Handle to the I2CBridge device.

Return value:
U2C_SUCCESS

The line was successfully dropped.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

GPIO routines

U2C_RESULT U2C_SetIoDirection (

HANDLE hDevice,
ULONG Value,
ULONG Mask

);

The U2C_SetIoDirection function configures input/output direction of the GPIO port
pins.

Parameters:

hDevice
Handle to the I2CBridge device.

Value
An unsigned long value specifying the direction of the GPIO.
Value is treated as unsigned long 0xXXCCBBAA, where CC, BB and AA
correspond to the C, B and A port pins:

 15

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

AA bits 7..0 correspond to Port A pins 7..0
BB bits 7..0 correspond to Port B pins 7..0
CC bits 7..0 correspond to Port C pins 7..0
XX bits 7..0 reserved

Bit set to 1 indicates configuration of the corresponding pin as output.
Bit set to 0 indicates configuration of the corresponding pin as input.

Mask
An unsigned long value specifying the data mask to use when modifying
the GPIO pins direction. The mask value allows modification of the
desired pins only, living rest of the pins unchanged. The bit mapping for
Mask parameter is exactly the same as for Value parameter. Only direction
of the pins with mask bit set to 1 will be changed.

Return value:
U2C_SUCCESS

The GPIO pins direction was successfully modified.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_GetIoDirection (

HANDLE hDevice,
ULONG *pValue,

);

The U2C_GetIoDirection function obtains current input/output direction of the GPIO
port pins.

Parameters:

hDevice
Handle to the I2CBridge device.

*pValue
A pointer to unsigned long to be filled with the direction of the GPIO pins.
*pValue is treated as unsigned long 0xXXCCBBAA, where CC, BB and
AA correspond to the C, B and A port pins:
AA bits 7..0 correspond to Port A pins 7..0
BB bits 7..0 correspond to Port B pins 7..0
CC bits 7..0 correspond to Port C pins 7..0
XX bits 7..0 reserved

Bit set to 1 indicates configuration of the corresponding pin as output.
Bit set to 0 indicates configuration of the corresponding pin as input.

Return value:
U2C_SUCCESS

The GPIO pins direction was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

 16

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_RESULT U2C_IoWrite (

HANDLE hDevice,
ULONG Value,
ULONG Mask

);

The U2C_IoWrite sets the output value of the GPIO port pins. Pins have to be configured
as output using U2C_SetIoDirection function first.

Parameters:

hDevice
Handle to the I2CBridge device.

Value
An unsigned long value specifying the value to be set to the GPIO pins.
Value is treated as unsigned long 0xXXCCBBAA, where CC, BB and AA
correspond to the C, B and A port pins:
AA bits 7..0 correspond to Port A pins 7..0
BB bits 7..0 correspond to Port B pins 7..0
CC bits 7..0 correspond to Port C pins 7..0
XX bits 7..0 reserved

Mask
An unsigned long value specifying the data mask to use when modifying
the GPIO pins output value. The mask value allows modification of the
desired pins only, living rest of the pins unchanged. The bit mapping for
Mask parameter is exactly the same as for Value parameter. Only value of
the pins with mask bit set to 1 will be changed.

Return value:
U2C_SUCCESS

The GPIO pins output value was successfully modified.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_IoRead (

HANDLE hDevice,
ULONG *pValue,

);

The U2C_IoRead function obtains the value of the GPIO port pins.

Parameters:

hDevice
Handle to the I2CBridge device.

*pValue
A pointer to unsigned long to be filled with the value of the GPIO pins.

 17

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

*pValue is treated as unsigned long 0xXXCCBBAA, where CC, BB and
AA correspond to the C, B and A port pins:
AA bits 7..0 correspond to Port A pins 7..0
BB bits 7..0 correspond to Port B pins 7..0
CC bits 7..0 correspond to Port C pins 7..0
XX bits 7..0 reserved

Return value:
U2C_SUCCESS

The GPIO pins state was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_SetSingleIoDirection (

HANDLE hDevice,
ULONG IoNumber,
BOOL bOutput

);

The U2C_SetSingleIoDirection function configures input/output direction of the specified
GPIO port pin.

Parameters:

hDevice
Handle to the I2CBridge device.

IoNumber
The number of the GPIO pin to change direction.
Numbers 0..7 correspond to Port A pins 0..7
Numbers 8..15 correspond to Port B pins 0..7
Number 16..23 correspond to Port C pins 0..7

bOutput
The direction of the pin.
bOutput = TRUE configures the pin for output.
bOutput = FALSE configures the pin for input.

Return value:
U2C_SUCCESS

The GPIO pin direction was successfully modified.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_BAD_PARAMETER
 IoNumber is out of range.

 18

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_RESULT U2C_GetSingleIoDirection (

HANDLE hDevice,
ULONG IoNumber,
BOOL *pbOutput

);

The U2C_GetSingleIoDirection function obtains input/output direction of the specified
GPIO port pin.

Parameters:

hDevice
Handle to the I2CBridge device.

IoNumber
The number of the GPIO pin to obtain direction.
Numbers 0..7 correspond to Port A pins 0..7
Numbers 8..15 correspond to Port B pins 0..7
Number 16..23 correspond to Port C pins 0..7

pbOutput
A pointer to the boolean to be filled with the direction of the pin.
*pbOutput = TRUE indicates that the pin is configured for output.
*pbOutput = FALSE indicates that the pin is configured for input.

Return value:
U2C_SUCCESS

The GPIO pin direction was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_BAD_PARAMETER
 IoNumber is out of range.

U2C_RESULT U2C_SingleIoWrite (

HANDLE hDevice,
ULONG IoNumber,
BOOL Value

);

The U2C_SingleIoWrite function sets the output value of the specified GPIO port pin. Pin
must be configured as output using U2C_SetIoDirection or U2C_SetSingleIoDirection
functions first.

Parameters:

hDevice
Handle to the I2CBridge device.

IoNumber
The number of the GPIO pin to set output value to.

 19

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Numbers 0..7 correspond to Port A pins 0..7
Numbers 8..15 correspond to Port B pins 0..7
Number 16..23 correspond to Port C pins 0..7

Value
The GPIO pin new output value.

Return value:
U2C_SUCCESS

The GPIO pin output value was successfully modified.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_BAD_PARAMETER
 IoNumber is out of range.

U2C_RESULT U2C_SingleIoRead (

HANDLE hDevice,
ULONG IoNumber,
BOOL *pValue

);

The U2C_SingleIoRead function obtains the value of the specified GPIO port pin.

Parameters:

hDevice
Handle to the I2CBridge device.

IoNumber
The number of the GPIO pin to obtain value from.
Numbers 0..7 correspond to Port A pins 0..7
Numbers 8..15 correspond to Port B pins 0..7
Number 16..23 correspond to Port C pins 0..7

*pValue
A pointer to boolean to be filled with the GPIO pin state.

Return value:
U2C_SUCCESS

The GPIO pin state was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.
U2C_BAD_PARAMETER
 IoNumber is out of range.

SPI configuration routines

 20

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

U2C_RESULT U2C_SpiSetConfig(

HANDLE hDevice,
BYTE CPOL,
BYTE CPHA

);

The U2C_SpiSetConfig function configures SPI bus clock polarity and phase.

Parameters:

hDevice
Handle to the I2CBridge device.

CPOL
Clock polarity value determines the CLK line idle state, where:
0 corresponds to “idle low”
1 corresponds to “idle high”

 CPHA
Clock phase value determines the clock edge when the data is valid on the
bus, where:
0 corresponds to valid data available on leading edge
1 corresponds to valid data available on trailing edge

Return value:
U2C_SUCCESS
 The SPI bus was successfully configured.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_SpiGetConfig(

HANDLE hDevice,
BYTE *pCPOL,
BYTE *pCPHA

);

The U2C_SpiGetConfig function obtains SPI bus configuration (clock polarity and
phase).

Parameters:

hDevice
Handle to the I2CBridge device.

CPOL
A pointer to the byte to be filled with current SPI bus clock polarity
setting.
Clock polarity determines the CLK line idle state, where:

 21

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

0 corresponds to “idle low”
1 corresponds to “idle high”

 CPHA
A pointer to byte to be filled with current SPI bus clock phase setting.
Clock phase value determines the clock edge when the data is valid on the
bus, where:
0 corresponds to valid data available on leading edge
1 corresponds to valid data available on trailing edge

Return value:
U2C_SUCCESS
 The SPI bus configuration was successfully obtained.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_SpiSetFreq(

HANDLE hDevice,
BYTE Frequency

);

The U2C_SpiSetFreq function configures SPI bus speed.

Parameters:

hDevice
Handle to the I2CBridge device.

Frequency
The frequency of SPI bus, where:
0 corresponds to SPI bus frequency of 200 kHz.
1 corresponds to SPI bus frequency of 100 kHz.
1+n corresponds to the SPI bus clock period equal to 10+2*n µS.

For convenience following constants were introduced:

constant frequency
U2C_SPI_FREQ_200KHZ 200 kHz
U2C_SPI_FREQ_100KHZ 100 kHz
U2C_SPI_FREQ_83KHZ 83 kHz
U2C_SPI_FREQ_71KHZ 71 kHz
U2C_SPI_FREQ_62KHZ 62 kHz
U2C_SPI_FREQ_50KHZ 50 kHz
U2C_SPI_FREQ_25KHZ 25 kHz
U2C_SPI_FREQ_10KHZ 10 kHz
U2C_SPI_FREQ_5KHZ 5 kHz
U2C_SPI_FREQ_2KHZ 2 kHz

 22

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Return value:
U2C_SUCCESS
 The frequency value was successfully set.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_SpiGetFreq(

HANDLE hDevice,
BYTE *pFrequency

);

The U2C_SpiGetFreq function obtains SPI bus speed.

Parameters:

hDevice
Handle to the I2CBridge device.

pFrequency
A pointer to byte to be filled with the current SPI bus frequency, where:
0 corresponds to SPI bus frequency of 200 kHz.
1 corresponds to SPI bus frequency of 100 kHz.
1+n corresponds to the SPI bus clock period equal to 10+2*n µS.

For convenience following constants were introduced:

constant frequency
U2C_SPI_FREQ_200KHZ 200 kHz
U2C_SPI_FREQ_100KHZ 100 kHz
U2C_SPI_FREQ_83KHZ 83 kHz
U2C_SPI_FREQ_71KHZ 71 kHz
U2C_SPI_FREQ_62KHZ 62 kHz
U2C_SPI_FREQ_50KHZ 50 kHz
U2C_SPI_FREQ_25KHZ 25 kHz
U2C_SPI_FREQ_10KHZ 10 kHz
U2C_SPI_FREQ_5KHZ 5 kHz
U2C_SPI_FREQ_2KHZ 2 kHz

Return value:
U2C_SUCCESS
 The frequency value was successfully retrieved.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

 23

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

SPI data transfer routines

U2C_RESULT U2C_SpiReadWrite(

HANDLE hDevice,
BYTE *pOutBuffer
BYTE *pInBuffer
unsigned short Length

);

The U2C_SpiReadWrite function shifts out (writes) and in (reads) a stream of bytes
to/from the SPI slave device.

Parameters:

hDevice
Handle to the I2CBridge device.

pOutBuffer
Pointer to the buffer containing the data to be shifted out to the slave SPI
device.

pInBuffer
Pointer to the buffer that receives the data shifted in from the slave SPI
device.

Length
Number of bytes to be transferred via SPI bus.

Return value:
U2C_SUCCESS
 The data was successfully transmitted via SPI bus.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_SpiWrite(

HANDLE hDevice,
BYTE *pOutBuffer
unsigned short Length

);

The U2C_SpiWrite function shifts out (writes) a stream of bytes to the SPI slave device.

Parameters:

hDevice
Handle to the I2CBridge device.

pOutBuffer

 24

U2C-11 API (version 0.1.3) http://www.xdimax.com/u2c/u2c11.html

Pointer to the buffer containing the data to be shifted out to the slave SPI
device.

Length
Number of bytes to be shifted out to the slave SPI device.

Return value:
U2C_SUCCESS
 The data was successfully written.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

U2C_RESULT U2C_SpiRead(

HANDLE hDevice,
BYTE *pInBuffer
unsigned short Length

);

The U2C_SpiRead function shifts in (reads) a stream of bytes from the SPI slave device.

Parameters:

hDevice
Handle to the I2CBridge device.

pInBuffer
Pointer to the buffer that receives the data shifted in from the SPI slave
device.

Length
Number of bytes to be shifted in.

Return value:
U2C_SUCCESS
 The data was successfully read.
U2C_HARDWARE_NOT_FOUND
 I2CBridge device referenced by hDevice handle was not found.

 25

	U2C-11 API Programmer’s Guide.
	U2C-11 board initialization routines
	I2C high level and configuration routines
	I2C low level routines
	I2C wire level routines
	GPIO routines
	SPI configuration routines
	SPI data transfer routines

